

WINDIGO

FOOTPRINTS FOUND

TLP:WHITE April 2021

TLP: White

2 / 23

Table of Contents

EXECUTIVE SUMMARY .. 3

EVOLUTION .. 4

VERSION < 1.2 ... 4

VERSION 1.2.1 - 1.3.3 .. 4

VERSION 1.5.0 – 1.6.2 .. 5

VERSION 1.7.1 – 1.7.3 .. 5

TECHNICAL ANALYSIS ... 6

DYNAMIC FUNCTIONS RESOLUTION .. 6

FUNCTIONS HOOKING .. 7

BACKDOOR FUNCTIONALITIES ... 11

DAEMON & SOCKET COMMUNICATION ... 14

DGA & C2 ... 16

DETECTION AND MITIGATION .. 18

CONCLUSIONS .. 20

MITRE ATT&CK TTPS.. 21

INDICATORS OF COMPROMISE .. 22

HASHES ... 22

IPS ... 22

C2 ... 22

YARA RULE .. 23

TLP: White

3 / 23

Executive Summary

Ebury is a well-known Linux OpenSSH backdoor and credential stealer created by

cyber-criminal gang, which ESET researchers named Operation Windigo1. The first

sample was spotted in 2011, and in 2014 a joint research between CERT-Bund, the

Swedish National Infrastructure for Computing, the CERN and ESET was published

about this threat. In 2017 ESET issued an in-depth technical update about Windigo

gang operations, showing lots of new features introduced in the modern variants. As

a result of ESET analysis effort, the Russian citizen Maxim Senakh was arrested and

sentenced to 46 months by FBI2. Not many updates about this threat were published

since then. In this technical report we analyze a brand-new variant spotted for the first

time in October 2020. We try to uncover complex functionalities of the backdoor,

going deep into the most recent introduced capabilities and evidencing the differences

with respect to older versions. Its main focus is to remain stealth and avoid detection

from infected systems, providing persistent remote access to threat actor and the

ability to exfiltrate sensitive information, such as users credentials. These findings show

that Windigo crew’s infamous operation has probably undergone a partial slowdown

due to Senakh’s arrest, but is anything but dead.

1https://www.welivesecurity.com/2014/03/18/operation-windigo-the-vivisection-of-a-large-linux-server-side-

credential-stealing-malware-campaign/
2 https://www.welivesecurity.com/2017/10/30/esets-research-fbi-windigo-maxim-senakh/

TLP: White

4 / 23

Evolution

Ebury’s authors used to embed version number into each sample, that simplify its

evolution tracking process. Ebury evolves along with version ups, including adding

features and changing existing ones. Now we introduce a brief overview of all different

versions discovered.

Version < 1.2

We know little about very first versions. It seems that Ebury was spotted for the first

time in 2011 by a security researcher3. In its primitive variant, Ebury replaces ssh, sshd

and ssh-add Linux binaries with its modified versions, aiming to steal users’

credentials and enable to login without entering the password. To enhance

persistence, attackers also modified the RPM database of the victims with the hashes

of their malicious executables.

Version 1.2.1 - 1.3.3

Attackers abandoned ssh binary patching, and transferred previously implemented

malicious capabilities to libkeyutils.so, a shared object dynamically loaded by

OpenSSH binaries4. They added a constructor function to the library with the aim of

patching original code and hijacking original functions. In order to discover the original

address of functions, they made a massive use of dlopen, dlsym and dlinfo

3 https://plog.sesse.net/blog/tech/2011-11-15-21-44_ebury_a_new_ssh_trojan.html
4 https://www.welivesecurity.com/2014/02/21/an-in-depth-analysis-of-linuxebury/

2011

2014 2019

2017 2020

v1.2

v1.2.1

v1.3.2

v1.3.3

v1.3.4

v1.5.0

v1.5.1

v1.5.5

v1.5.6

v1.6.2

v1.7.0

v1.7.1

v1.7.2

v1.7.3

Figure 1 - Ebury’s evolution timeline

TLP: White

5 / 23

primitives. Once installed, Ebury gives the ability to remote login with a specially-

crafted ssh packet and credential stealing.

Version 1.5.0 – 1.6.2

In these versions, malicious actor added hooks to other functions, such as readdir,

open, open64 and fgets in order to remain stealth: in fact, as already mentioned by

ESET researchers5, this feature gives Ebury the shape of a userland rookit. They

hijacked such functions, by introducing checks when a user tries to open

/proc/self/environ or to accesso to .ssh/authorized_keys. Moreover, the

malware was able to inject its own configuration into sshd and use attacker’s

hardcoded public key for authentication. Lastly, many network peculiarities were

added: for example, a DGA for C2 communication and a validation control on the

domain using encrypted DNS TXT record.

Version 1.7.1 – 1.7.3

First samples were spotted in 2019 by CERN Computer Security Team6. This report

would be an immersive investigation about the latest versions, still active nowadays.

5 https://www.welivesecurity.com/2017/10/30/windigo-ebury-update-2/
6 https://security.web.cern.ch/advisories/windigo/windigo.shtml

TLP: White

6 / 23

Technical analysis

Latest variants appeared online is 1.7, available in three different sub-versions: 1.7.1.c,

1.7.2, and 1.7.3. The first one is smaller than latters (~38 KB vs ~50 KB), and it is

distributed as a Linux shared object with the name libtsq.so. Instead, latest variants

1.7.2-3 were observed in second half of 2020 and spread as libkeyutils.so.1. It is

a well-known library, loaded by ssh-related binaries, and consists in a set of utilities

for managing and preserving authorization and encryption keys required to perform

secure operations. From now on, we focus the analysis effort on versions 1.7.2 and

1.7.3, for which every statement applies due to their high similarity.

Latest samples are an incremental update of the previous versions, where several new

features were added. Authors still implemented the majority of malicious code in

.ctors (constructors) section, which contains function pointer to initialization code

that is executed before the victim program runs into main() function. Actual versions,

like older ones, do not contain many strings in cleartext, but rather they are encrypted

with a XOR cipher using a pseudo-random generated key that changes every round of

the loop. The algorithm used to generate the one-time key seems based on srand(),

a well-known glibc function commonly called to initialize a pseudo-random number

generator.

Figure 2 - Decryption routine for strings.

Dynamic functions resolution

In order to hinder the auto-analysis of the disassemblers and its external parameter

propagation capability, Ebury dynamically resolves both all functions and global

variables in the constructor. For this purpose, it parses the dynamic segment,

corresponding to the .dynamic section, that consists in an array of Elf64_Dyn

structures. Looping through all structures of this section, it searches for the one with

TLP: White

7 / 23

d_tag of type DT_PLTGOT, namely the address of the section .got.plt. Its value is

the address of the Global Offset Table (GOT), referred to the Procedure Linkage Table

(PLT). Recovering GOT base address allows Ebury to calculate the offset GOT[1], which

points to the link_map chain, the linked list used by the operating system loader to

resolve external symbols. The algorithm Ebury uses to convert strings to the

corresponding external symbols is a re-implementation of the one used by the

operating system's dynamic linker, and supports symbol lookup by both standard hash

tables7, based on PJW hash function, and GNU hash tables8, based on DJB2. The

analysis is quite difficult but allows to understand the malicious actor's in-depth

knowledge of ELF file loading mechanisms on Linux systems.

Functions hooking

Ebury uses two different methods for hooking libraries: the first one targets the victim

program, the second one aims to spread itself across every command launched by the

victim program:

 Using PLT/GOT Redirection. In this case it sets hooks by overwriting the PLT ad-

dresses in the .got.plt section of the victim program. We will describe it better

with an example. Let x.bin be the victim program, f() the legitimate function to

hook and mal_f() the malicious function which Ebury wants to hook to f(). Then:

7 https://flapenguin.me/elf-dt-hash
8 https://flapenguin.me/elf-dt-gnu-hash

Figure 3 - Ebury's dynamic linking implementation with standard hash table (above) and GNU hash table (below).

TLP: White

8 / 23

 Ebury iterates over the relocation table looking for the Elf64_Rela struc-

ture that refers to the symbol whose name is f();

 Once found, the offset is copied and dynamically relocated, simulating what

the loader does in an ASLR-enabled environment. The result is an address

that points to the legitimate function f(), existing in the x.bin PLT;

 Ebury now changes the access permission of the memory pointed by the

address found, to make it writeable;

 Now Ebury replaces the legitimate address with mal_f()’s address;

Figure 4 – Example of PLT/GOT redirection implementation in Ebury.

 Using LD_PRELOAD environment variable, by setting its value to lib-

keyutils.so.1, right before execution of a program. In this way it is able to per-

form runtime patching by redirecting many shared glibc functions, because the

given library takes precedence over any other loaded shared libraries. Since it does

not work on existing processes, the shared library must be loaded upon execution

of a program: in this case when a client connects to the infected machine in SSH,

the malware compromises every command executed by the victim by prepending

LD_PRELOAD.

In particular, it hooks:
o execl
o execve
o execvp

o execvpe (not seen in previous versions)
o fopen
o fopen64
o open
o open64
o openat
o openat64

o opendir (not seen in previous versions)
o popen

o prctl (not seen in previous versions)
o readdir
o readdir64

TLP: White

9 / 23

o seccomp_load (not seen in previous versions)

o system (not seen in previous versions)

For example, hooked system() function first checks if LD_PRELOAD or LD_DEBUG

environment variables are set: if not, it appends LD_PRELOAD, so it can hijack other

processes calls to system functions.

Figure 5 – Ebury’s implementation of hooked libc system() function.

Furthermore, Ebury is able to heuristically understand from which binary it has been

launched, by searching the existence of specific libraries and functions. To do that, it

makes use of a global variable that it sets with a value between 0 and 4. First of all,

types 1 to 4 identify a program which must have loaded libc.so and libcrypto.so

and contain RSA_sign or EVP_SignFinal functions in .reloc section. Then, the

specific assigned value is decided according to the conditions of the following table:

TLP: White

10 / 23

 connect() prctl() EVP_CipherInit() deflateInit_() logout() tcpsendbreak() PEM_read_*()

Type 1 ✓ or ✕ ✓ ✓ ✓ or ✓ −

Type 2 ✓ − ✓ ✓ ✕ ✕ ✓

Type 3 ✓ or ✕ ✓ ✕ − − −

Type 4 ✕ ✓ − − − − −

Table 1 – Conditions through which Ebury detects which running binary it has compromised.

Following our tests, the associations between types and victim programs have been

listed below:

 Type 1: SSHD;

 Type 2: SSH / RSH / RLOGIN / SLOGIN;

 Type 3: SSH-AGENT / SSH-KEYGEN / OPENSSL;

 Type 4: CLAMONACC;

 Type 0: matches any other case. This includes any other application launched

in a compromised ssh session by using LD_PRELOAD environment variable, like

cd and ls.

Based on which binary loaded Ebury, it hooks different functions: for example, scanf

and sscanf are hijacked only when original process is sshd. It is noteworthy what

happens when it does not recognize one of previous known binaries: at this point,

malware checks whether /curl.so is dynamically loaded or the binary name contains

“php”. In this case it substitutes every curl-related function with its own malicious

version, that performs a POST request to its C2, containing contacted URL and original

request body in POST data, every time a curl request is made. The destination FQDN

address can be dynamically set by the attacker using commands described in

“Backdoor functionalities” section of this report.

TLP: White

11 / 23

Figure 6 – Hooked curl function that sends POST data to C&C.

Backdoor functionalities

As already found in previous versions, a tailored SSH data packet allows attackers to

bypass standard authentication mechanisms and remotely connect to infected targets.

Ebury intercepts SSH’s sscanf() calls that is responsible to parse version number: in

the malicious routine, it takes the twenty-two (22) characters string sent as version

number, decodes them from base64, decrypt them using host remote IP address in

binary format xor-ed with 0x1010101, and then calculates the SHA-1 hashsum

comparing it with a hardcoded value

(DB44994ED1ED262B044D9AD0303E1A4ED2FC0372). If every condition is met, the

malicious actor gets into the victim.

Figure 7 - Original call to sscanf() by sshd, hooked by Ebury.

TLP: White

12 / 23

Figure 8 – Hooked sscanf() in Ebury.

Moreover, this mechanism lets the malicious actor send custom commands to infected

machines, specified by the following scheme:

SSH-<protocol>-<base64encoded-password>X<command><command_argument>

Version 1.7.2 supports seven (7) different commands; 1.7.3 even one more. The full list

as follows:

 ver: write to output Ebury’s hardcoded version number and exit. It also takes an

optional input parameter in order to set the exfiltration server IP address;

 cat: write to standard output all passwords stored in the global buffer and exit. It

also takes an optional input parameter in order to set the exfiltration server IP ad-

dress;

 bnd: it takes an input parameter to set an IPv4 address. Whenever sshd creates a

tunnel to a remote host, binds the client socket to the specified address;

 psw: seems not to be implemented yet, for now it behaves like ver;

 xsh: set user’s login shell to the default value (commonly /bin/sh);

 csh: is the combination of commands cat and xsh;

 crl: it takes an input parameter in order to set the FQDN of the exfiltration server

used to hijack curl/php communications;

 cls: only available in 1.7.3, is the combination of commands xsh and crl.

Variant 1.7.3 also introduced an unseen mechanism in order to make its presence

stealthier and tougher to detect: while hooking execve(), it ensures to delete the

content of SSH_CLIENT and SSH_CONNECTION environment variables, that are

responsible to show ssh information about address and open incoming/outgoing

TLP: White

13 / 23

ports. Furthermore, it sets POSIXLY_CORRECT=y when the attackers is currently logged

in using xsh command.

Figure 9 – Hiding techniques seen in v1.7.3.

Malicious actor hardcoded a SSH public key, that can be used to remotely authenticate.

In order to accomplish the goal, malware first injects a custom sshd configuration to

enable Public Key authentication and bypass Linux

Pluggable Authentication Modules (PAM), changes the default authorized key file to

/proc/self/environ, and then patches fgets() and __getdelim() functions,

forcing them to add the hardcoded Public Key to authorized keys and making it

possible to authenticate with related private key owned by attackers.

TLP: White

14 / 23

It is worth to mention how attackers can use two environment variables G and S. The

former is used to disable the hook to function write(), which hides possible errors

written to stderr, the latter to disable glibc functions hooking through LD_PRELOAD.

Probably, these two variables are used for debug purpose when the operator logs in

into an infected machine.

Daemon & socket communication

Among the Unix binaries targets, sshd is certainly the most complex and interesting

one. In this case, Ebury distributes the business logic of the backdoor on two different

PrintLastLog no
PrintMotd no
PasswordAuthentication no
PermitRootLogin yes
UseLogin no
UsePAM no
UseDNS no
ChallengeResponseAuthentication no
LogLevel QUIET
StrictModes no
PubkeyAuthentication yes
AllowUsers n
AllowGroups n
DenyUsers n
DenyGroups n
AuthorizedKeysFile /proc/self/environ
Banner /dev/null
PermitTunnel yes
AllowTcpForwarding yes
PermitOpen any
AuthenticationMethods publickey

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDSEuS/A5HLzAw-
Cbs+fqxCv1rLZ+x4vCdzcfLppJuCHnD2EO58W4aNDxtn2IBooyr4zylBJrNa64
nQ3L7MvxckQMMLWkN6owZPtJs7+BPIsljX+Kz0svqGH-
DYk5KyQQ+O/uWVUU96X4NkyE4BxeQnH6jCYw2FCcnudsS5GLse-
BUozQvQlQEErRq3ma3skzZGB4kOq6He7ksaEUFjzgy-
fAQHzr1hPX5KJ/du4z7fX0KqUphK4AXbPL4Pqkusw4PeQLDjZGO8hRk-
DMVjnaPNliAS2pV9Guw+L7SLvXGHsz1Q+tT54JaSHkJoN6a0lJ/L3Ie-
hVTi/ZLLh4GgZ1WpWH7EqL

Figure 11 – Ebury sshd configuration.

Figure 10 – Ebury ssh public key.

TLP: White

15 / 23

processes, and use a local socket for communicating with each other. The source

process (sshd) sends commands, while a Linux executable is started as a daemon and

listen for incoming local connections and commands. Communications take place via

a Unix socket, created and managed by this daemon. The victim program uses it mainly

for storage operations: in fact, it creates a memory structure, whose size is ~3 MB, to

save logs created by the malware itself and victims’ passwords to be exfiltrated. This

buffer is periodically filled with the content of a second smaller buffer (32 KB), also

controlled by the process sshd. It is not clear why the attacker choses this strategy,

but he forks sshd multiple times (e.g., each time a client connects), so this probably

requires the implementation of a custom shared storage.

The most interesting commands accepted by the daemon have been simplified and

listed below:

 append: adds content to the buffer;

 flush: asks the daemon to send the entire big buffer;

 parse: receives the command (e.g., ver or cat) sent by the attacker;

 put: saves a string into a dedicated buffer;

 get: extracts the string previously set with put.

It is also noteworthy how the demon is instantiated. The victim program at startup,

during the loading and hooking routines performed in the constructor, creates a child

process with a call to fork(). The parent process continues to run previously, while

the child spawns all the following legitimate Linux executables:

- /bin/sync
- /bin/hostname
- /usr/sbin/atd

and five (5) randomly chosen from the list below:

- /sbin/auditd
- /usr/sbin/crond
- /usr/sbin/anacron
- /usr/sbin/arpd
- /usr/sbin/acpid
- /sbin/rsyslogd
- /sbin/udevd
- /usr/lib/systemd/systemd-udevd

In order to backdoor them, each of the above processes is run with LD_PRELOAD

environment variable set, and libcrypto.so and libkeyutils.so full paths as value.

Thereafter, each of them will try to create a Unix socket on /run/systemd/log and

start listening on it: clearly, only one of them will succeed, while others processes will

fail with error EADDRINUSE and exit. The “winner” process finally creates the daemon

with a call to daemon() and then terminates.

TLP: White

16 / 23

DGA & C2

Domain Generation Algorithm (DGA) is similar to older versions implementations,

spawned with a fork() call. Attackers added a 300 milliseconds sleep whenever a

domain is generated, that is increased to 1 second after the 63th failed attempt.

Chosen alphabet is abcdefghijklmnopqrstuvwxyz123456. If the generated domain

starts with a digit, it is replaced with the character ”a” in order to make it valid. TLDs

also remain the same of older variants: .info, .net and .biz.

Figure 12 – DGA algorithm.

The DGA is circular: in fact, even if total iterations are more than 30.000, there are only

ninety-six (96) unique domains. Whenever a domain is created, the malware performs

two DNS requests: the first for retrieving the “A record” and a second one for “TXT

record”. In the former request, malware also adds the current timestamp in front of the

domain, but discards the response. Instead, every valid TXT record response is verified

and decrypted through a hardcoded RSA Public Key to authenticate the domain.

-----BEGIN RSA PUBLIC KEY-----MIG-
JAoGBAOadSGBGG9x/f1/U6KdwxfGzqSj5Bcy4aZpKv77uN4xYdS5HWmEub5Rj

nAvtKybupWb3AUWwN7UPIO+2R+v6hrF+Gh2apcs9I9G7VEBiToi2B6BiZ3Ly68kj
1ojemjtrG+g//Ckw/osESWweSWY4nJFKa5QJzT39ErUZim2FPDmvAgMBAAE=

-----END RSA PUBLIC KEY-----

Figure 13 – Hardcoded RSA Public Key.

TLP: White

17 / 23

Figure 14 – Decryption and parsing of the TXT record value using the hardcoded RSA Public Key.

The decrypted content is composed of colon-separated text, as already seen in

previous versions. The first chunk represents the domain, the second one is the decimal

representation of the C2 IP address (e.g., 3005980741 => 179.43.160[.]69) and

the last one is a timestamp that represents an expiration date, after which the C2 is not

valid anymore (e.g., 1622505600 = 2021/06/01 00:00 UTC). This validation

mechanism tries to avoid possible sink-hole attempts. Then, data exfiltration takes

place using a DNS request (port 53) toward the received IP address.

As we can see from Table 1, attackers are constantly switching IP addresses in TXT

record in the last two (2) years. However, by decrypting the content of the TXT record,

it is possible to predict the next update, that should be on 2021/06/01 00:00 UTC.

At the time of writing, latest version has op3f1libgh[.]biz as the only currently

active domain generated by DGA with a valid TXT record, last updated on 02/02/2021.

ENCRYPTED TXT Record DECRYPTED TXT Record First Seen Last Seen

P999MR0e//emIov0Z2qtoKKKhFtb1F6l+zMxn9a

3q2p18ZWeaTyPXMAlXDAQI3bz6pxmeQzGCuz1P1

ms25AiPKGuqhZ+etJXVnjy9Ir4zc2UU3jyeFZhs

7UEfGAcZut5LY9dt5tCJKhPhYwbz4s2ZixBVUWP

bFDuODCJIi4L3fw=

op3f1libgh.biz:

3005980741:

1622505600

2021/02/02

pusSmJ8IKds+IwzH3oUJV6MmT/f8/9DKwMk68/E

rzMDdkTbbOrVwrUicuIjFgTlyJSY1unZJM1HYa6

N6bXFxs/Nzn+v8yrqv95XNjQiKky4kGvD0qqZQK

op3f1libgh.biz:

3005980741:
2020/09/10 2021/02/02

TLP: White

18 / 23

TV1Sw1PbjgevpmgtnrXj39Redu8yeTe7uFCKHrn

vvWVfzuDiAutNcI=

1612137600

EHqSM8Jnzef4+1cEYTqVINho6bGaPbGmLOEkk6F

HAUfFZEQQuTYYMNLiugkA4SmkHmSylxOqWbkS/e

Lt7YTcA9x3imeDFTUOVwK01SN/hNl02FxXuaEOg

9WPw6J0rH9r4pOhVp1PHDYoUpItUgjyf++p+pNx

m4oWVEsCsB5/nXI=

op3f1libgh.biz:

3005980741:

1598745600

2020/03/16 2020/09/10

n+/C/igV2NksBM36nL+GiehFxwfvAXlRPMV2hvu

OPbtyJyItjaPTwR9/ziViDtvo9EDGFRr1mEFBGe

fXWvaEfkbN0SCkW+FJ5ja4fN3SONTQ3/8LcKgRE

/g96JOq3ZiyLBfFphCcLdYfmEfkVoQbhNLb/FFD

QDzelIkHLBMHO5w=

op3f1libgh.biz:

760855987:

1585526400

2019/10/15 2020/03/16

NZ8YHsqY6bk6QdJSEIBkh8ifSTnOUhrDGAcat43

Y7pgKhkVGjb6EQMHDdvhxF8ZpTDni0U5bRK8Wq9

1kkd3NV4uzXDTZTFpsWDEzD5h4lxcLQodK8d9eL

kxjLbYR6w4nJhUDMjfI3ou96FFZPX4GQKuWG435

XvHlNeyPEchF3vk=

op3f1libgh.biz:

3238048588:

1575072000

2019/06/05 2019/10/15

WZVphrenIo1fkomSS8WKDp5Qw0E66Mg6si+XUYS

f/J1IklHKGkgSdJ5zbafwkx6DQFRuvr0sGMuDI8

RsV8LPrC8k9l836NG9DNl+++G4bm4ULolQrp6KY

neVeOb39wLzG+YYG6fm8OdSjc5rqtcqOm2SUZag

HxC3tDkYq0EGH/s=

op3f1libgh.biz:

3238048588:

1559174400

2019/04/05 2019/06/03

Table 2 – List DNS TXT resolutions of Ebury’s C2, with decrypted content.

The only active C&C domain found in this version, op3f1libgh[.]biz, resolves on

78.140.134.9, appears to be hosted in Netherland by WEBZILLA. Related to this

domain and already observed in older versions of Ebury, there is also

larfj7g1vaz3y[.]net, resolving on the same subnet on IP 78.140.134.7,

registered on September 22, 2016 from the same provider.

A couple of things to notice for both domains: the malicious actor uses an uncommon

DNS TTL (Time To Live) value, configured to 1799, and hides the WHOIS record.

Detection and Mitigation

To quickly detect if your Linux system has been infected by Ebury, you can try this

simple command:

TLP: White

19 / 23

ssh -G 2>&1 | grep -e illegal -e unknown > /dev/null && echo
"System clean" || echo "System clean"9

In fact, ssh -G behaves differently in Ebury infected systems with respect to standard

ones: in clean hosts, system will inform you the use of the illegal option “G”, while in

compromised servers no error will arise.

Another simple verification step could be checking libkeyutils.so size: if greater

than 30 KB, there is a good chance that your machine has been compromised.

It is also possible to detect whether any process has a Unix socket opened and in listen

state on /run/systemd/log. Just run the following and check eventual output:

ss -lpn | grep @/run/systemd/log

As well as host indicators, it is possible to check network ones on your perimetral

systems, using indicators of compromise attached to this report.

In the unfortunate case your system shows infection evidences, the best thing to do is

perform a revert to clean state, wherever possible, and change SSH users’ passwords.

9 https://github.com/eset/malware-ioc/tree/master/windigo

TLP: White

20 / 23

Conclusions

Approximately ten years have passed since first Ebury sample was spotted, and

Windigo gang is still active nowadays. During these years it was possible to follow

Ebury’s evolution, observing its continuous improvement through every released

version, and outlining its growth in terms of features and complexity. Its development

demonstrates attackers’ wide knowledge of Linux internals, and especially a great

expertise of SSH network protocol and its related binaries. Furthermore, Ebury’s

maintenance shows the ability to keep up with operating systems releases.

In this report we tried to dissect remarkable functionalities, both old and ones

introduced in newest version. Due to its nature, Ebury appears to be only one of the

weapons at disposal of the threat actor: it acts as a backdoor with explicit persistence

and exfiltration purposes, while not much is known about its delivery and initial access

phases.

We also provided simple checks to audit the state of your Linux environments, in order

to detect eventual Ebury’s traces.

The usage of almost the same network indicators within the last two years suggests

that until now probably little action have been undertaken to restrict and mitigate such

threat, which rather proves its uninterrupted development and maintenance.

TLP: White

21 / 23

MITRE ATT&CK TTPs

Tactic Technique Name Comment

Execution T1129 Shared Modules Uses a .so file

Persistence T1554
Compromise Client Software

Binary

Changes a library

used by OpenSSH

binaries

Defense Evasion T1027 Obfuscated Files or Information
Strings are XOR

encrypted

Defense Evasion T1562 Impair Defenses
Disables logging

on target

Credential Access T1556 Modify Authentication Process

Attackers can login

used a well-crafted

password

Collection T1056.004
Input Capture: Credential API

Hooking

Steals legit

passwords

Command And

Control
T1071.004 Application Layer Protocol - DNS

Performs DNS

requests

Command And

Control

T1568.002

Dynamic Resolution: Domain

Generation Algorithms

Uses a DGA to

generate C&C

TLP: White

22 / 23

Indicators of Compromise

Hashes

v1.7.2
171DC0A24A59CDFDA8135F766D973399
70F238D148CC68F302D6572CCF4E06D5D7AD85D8
25EB6B951A7FEF71899907D726AC608EAAED6AE5495C308BF51E7F70E12BA49F

v1.7.3

6144F41503D7CDF5D9469EA024237507
44B04CFC095F93D17B1BD4F8820C16843FCBAC3E
998F74471BB96102781EB62713F57483DC6A6D1F27C429A957EB23BB124D7709

IPs

78.140.134[.]7
78.140.134[.]9
179.43.160[.]69

 45.89.189[.]179
 193.0.179[.]76

C2

a6mvk2yrwx[.]biz k2yrwxenct[.]biz

a6mvk2yrwx[.]info k2yrwxenct[.]info

a6mvk2yrwx[.]net k2yrwxenct[.]net

af1libghu4sd[.]biz libghu4sdaz[.]biz

af1libghu4sd[.]info libghu4sdaz[.]info

af1libghu4sd[.]net libghu4sdaz[.]net

alibghu4sd[.]biz mvk2yrwxenct[.]biz

alibghu4sd[.]info mvk2yrwxenct[.]info

alibghu4sd[.]net mvk2yrwxenct[.]net

amvk2yrwxen[.]biz nctqjop3f[.]biz

amvk2yrwxen[.]info nctqjop3f[.]info

amvk2yrwxen[.]net nctqjop3f[.]net

asdaz56mv[.]biz op3f1libgh[.]biz

asdaz56mv[.]info op3f1libgh[.]info

asdaz56mv[.]net op3f1libgh[.]net

ayrwxenctqj[.]biz p3f1libghu4[.]biz

ayrwxenctqj[.]info p3f1libghu4[.]info

ayrwxenctqj[.]net p3f1libghu4[.]net

az56mvk2yrwx[.]biz qjop3f1libgh[.]biz

az56mvk2yrwx[.]info qjop3f1libgh[.]info

az56mvk2yrwx[.]net qjop3f1libgh[.]net

bghu4sdaz[.]biz rwxenctqj[.]biz

bghu4sdaz[.]info rwxenctqj[.]info

TLP: White

23 / 23

bghu4sdaz[.]net rwxenctqj[.]net

ctqjop3f1l[.]biz sdaz56mvk2[.]biz

ctqjop3f1l[.]info sdaz56mvk2[.]info

ctqjop3f1l[.]net sdaz56mvk2[.]net

daz56mvk2yr[.]biz tqjop3f1lib[.]biz

daz56mvk2yr[.]info tqjop3f1lib[.]info

daz56mvk2yr[.]net tqjop3f1lib[.]net

enctqjop3f1l[.]biz u4sdaz56mvk2[.]biz

enctqjop3f1l[.]info u4sdaz56mvk2[.]info

enctqjop3f1l[.]net u4sdaz56mvk2[.]net

f1libghu4[.]biz vk2yrwxen[.]biz

f1libghu4[.]info vk2yrwxen[.]info

f1libghu4[.]net vk2yrwxen[.]net

ghu4sdaz56[.]biz wxenctqjop[.]biz

ghu4sdaz56[.]info wxenctqjop[.]info

ghu4sdaz56[.]net wxenctqjop[.]net

hu4sdaz56mv[.]biz xenctqjop3f[.]biz

hu4sdaz56mv[.]info xenctqjop3f[.]info

hu4sdaz56mv[.]net xenctqjop3f[.]net

ibghu4sdaz56[.]biz yrwxenctqjop[.]biz

ibghu4sdaz56[.]info yrwxenctqjop[.]info

ibghu4sdaz56[.]net yrwxenctqjop[.]net

jop3f1lib[.]biz z56mvk2yr[.]biz

jop3f1lib[.]info z56mvk2yr[.]info

jop3f1lib[.]net z56mvk2yr[.]net

Yara rule

1. rule Linux_Ebury_172_173_Apr2021 {
2. meta:
3. description = "Detects Linux/Ebury 1.7.2-3"
4. date = " 2021"
5. author = "CSIRT Italy"
6. strings:
7. $a1 = "ctors"
8. $a2 = "seccomp_load"
9. $a3 = "popen"
10. $a4 = "system"
11. $a5 = "keyctl_"
12. condition:
13. uint32(0) == 0x464c457f // Generic ELF header
14. and uint8(16) == 0x0003 // Shared object file
15. and all of them

